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1.5 Constrained graph-exploration 37

Proof. For the proof of (i),(ii),(iii) and (v) we apply the same arguments as in the proof of Lemma 1.23.
It remains to show that (iv) holds. The main difference is that the size of a tree T is directly correlated to
the distance from s to 7', this is different from the previous argumentation.

Let us first show that the remaining tree 7; (after pruning) will be fully explored by DFS. For any
vertex v in T; we have dr,(s;,v) < W, otherwise v has been cut of by pruning. Thus we have
Tdg-(s,si)0

(1+o)dg(s,5:) —dg(s,8:) — dr.(si,v) > T

which shows that the tether is long enough 7; will be fully explored by DFS.

By induction over the number of pruning steps we will finally show: VT € 7 : |T| > w.

In the beginning we apply bDFS from the start with tether length c. Either we explore the whole
graph or we have |T| > (1 + a)c > & for the resulting spanning tree 7. For simplicity we assume
dg+(s,T;) > ¢ from now on.

We would like to show that for any tree T,,, resulting from the pruning of some 7;, we have |T,,| >
M. Also the remaining tree 7; has this property.

For the remaining tree 7; (after pruning), we conclude dg-(s,T;) = dg-(s,s;) and pruning guarantees
|T| > M. For a tree T,, pruned from 7; we have: |T,,| > 9dG*l(g’si)a — % (Z’Si>a = 5%t (S )% by the
pruning values Additionally, we have dg- (s, T,,) < dg=(s,si) +dg+(si,w) = (1 + §)dg= (s, s,) since the
M steps away from s. Fiir 0 < o < 1 we conclude: dg-(s,T,,) < Sd%(“")
dg(s,T,)a
e

root w of T,, is exactly

and together with the above inequality we have |T,,| >
Finally, we have to analyse the emerging spanning trees 7;,, which will be constructed from the bDFS
steps starting during the DFS walk in 7;. Such a tree T, starts at some incomplete vertex v in 7;. We

have dg-(si,v) < %6(”"), otherwise v would have been pruned and could not be a leaf of the rest of 7;

any more. Thus we have dg-(s,T,,) < dg+(s,si) +dg-(si,v) < %6(“") or dg-(s,si) > %(ST) If 7, is
fully explored, we are done, since the tree will be deleted. Assume that 7, still has incomplete vertices.
As mentioned above we have dr(s;,v) < %6(”")

Todgx (s,5:)
of =4~

. Starting from v there was a remaining tether length

for the construction of the incomplete 7, which gives |T,| > %ﬁ Application of
dG* (s si) > 16dG;5(S‘Tt) gives |T| > 7(XdG* (SvTV) > dg+ (iTt)a
dG* (S T, )

. Either we have explored everything behind v or

the spanning tree T, has size |T,| >
We have considered any emerging T € ‘T ! O

Theorem 1.28 (Duncan, Kobourov, Kumar, 2001/2006)
Applying the CFS-Algorithm with the adjustments above results in a correct restricted graph-exploration
of an unknown graph with unknown depth. The algorithm is (4 + %)—competitive. [DKKO06, DKKOI]

Proof. We apply the same analysis as in the proof of Theorem 1.24. For the analysis of the movements

from s to the roots of the trees we make use of the correlation |Tg| > M 0

For the number of steps we can also refine the analysis, analogously.

Corollary 1.29 The above CFS-Algorithm for the restricted exploration of an unknown graph with
unknown depth requires O(|E|+ |V|/a) exploration steps, which is optimal.
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