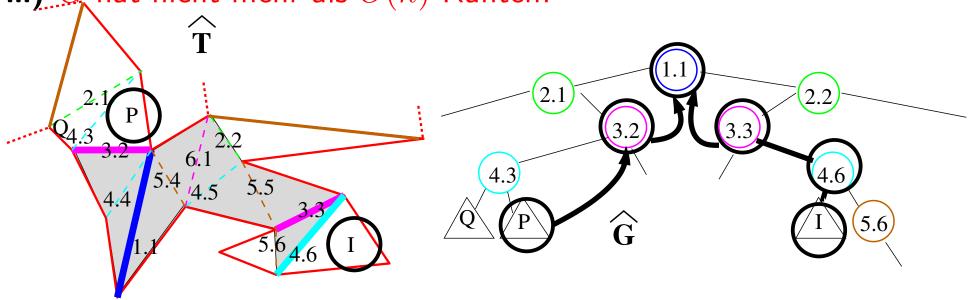
Offline Bewegungsplanung: Preprocessing und Durchmesser

Elmar Langetepe University of Bonn

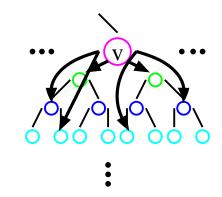
Eigenschaften von \widehat{G} : Lemma 1.13

- i) Pfad zwischen zwei Dreiecken entlang sukzessiver Diagonalen existiert!
- ii) Wir finden den Weg in $O(\log n)$ Zeit!



iii) Komplexität von G

- ullet Untere Kanten von v aus: max
 - $2 \times \text{height}(v)$
- $\begin{array}{ll} \text{Balance:} & \text{Teilbaum} & \text{bei} \quad v \\ \text{hat} & \geq C \cdot \left(\frac{3}{2}\right)^{\text{height(v)}} & \text{Bl\"atter} \end{array}$ (Tafel)

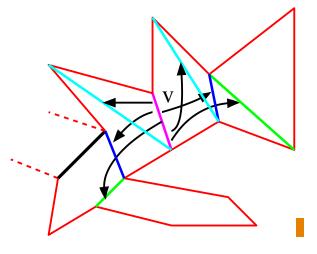


Anzahl Knoten der Höhe h:

$$\leq \frac{n}{C\left(\frac{3}{2}\right)^h} = \frac{n}{C}\left(\frac{2}{3}\right)^h$$

• Sum. über alle

$$\sum_{h=1}^{\log_3 n} (2h) \times \left(\left(\frac{2}{3} \right)^h \times \frac{n}{C} \right) \in O(n)$$



Konstruktion \widehat{G}

- Cutting-Theorem (Übung): konstruktiv!!
- Durchlauf von T^* von den Blättern aus!
- Während des Aufbaus: Insgesamt $\mathcal{O}(n)$ viele Diagonalen überschreiten?
- Aufbau geht auch in O(n)

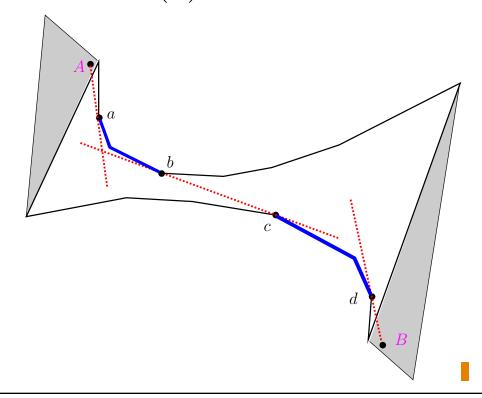
Zusammenfassung des Problems/Analyse

- 1. Berechne Triangulation T und Dual T^* : O(n)
- 2. Berechne hierarch. bal. Baum \widehat{T} , Sch.-Graph \widehat{G} : O(n)
- 3. Komplexität \widehat{G} : O(n)
- 4. Berechne alle Sanduhren von \widehat{G} : O(n)
- 5. Navigation zw. Dreiecken in \widehat{G} : Sequenz v. Diagonalen: $O(\log n)$
- 6 Konkat. Sanduhren für finale Sanduhr: $O(\log n)$
- 7. Berechne Shortest Path aus final. Sanduhr: $O(\log n + k)$

Query: Start $A \in P$, Ziel $B \in I$: Löse 5), 6) und 7)!!

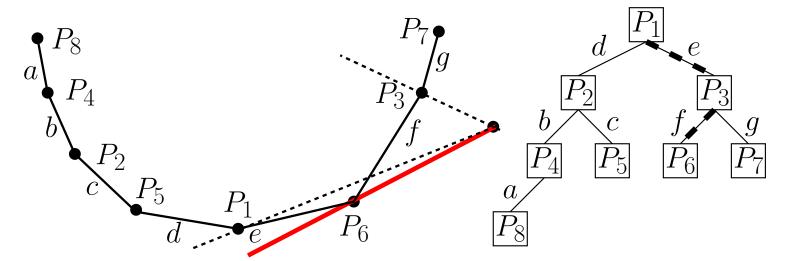
Berechne Shortest Path aus finaler Sanduhr

- Finale Sanduhr, Ziel und Start
- Data structure: Tangentenpunkte in logarithm. Zeit
- Länge in O(1), Pfad in O(k)



Datenstruktur Hourglass

- Ketten der Sanduhren in bal. Baum speichern
- Tangente in logarithm. Zeit berechnen
- Länge in O(1), Pfad in O(k)



Effektiver Aufbau aller Sanduhren in O(n)

- ullet Sanduhr $S(d_i,d_j)$ mit d_i und d_j lacksquare
- ullet Aus den Sanduhren mit d' in $O(\log(\mathsf{Komp}(S(d_i,d_j)))$
- Entspricht O(height(d')) viele solcher Sanduhren
- Abschätzen durch $O(\text{height}(d_i))$ (größere Höhe $d_i)$
- $2 * \text{height}(d_i)$ viele solcher d' für d_i
- Für alle Diagonalen!
- ullet Sum. über alle Höhen: $\sum_{h=1}^{\log_{\frac{3}{2}}n}2 imes\left(\left(rac{2}{3}
 ight)^h imes n
 ight) imes h^2$ $ullet\in O(n)$
- Lemma 1.14

Konstruktion \widehat{G} + Sanduhren

- Cutting-Theorem (Übung): konstruktiv!!
- ullet Durchlauf von T^* möglich
- Dabei Sanduhren aufbauen möglich
- Effektiv auch in O(n)!

Sanduhrenlemma: Lemma 1.15

Sanduhr $S(d_i, d_j)$ zwischen d_i und d_j mit $m(d_i, d_j)$ Diagonalen. Datenstruktur mit folgender Eigenschaft existiert:

- **i)** Entfernung zwischen Punkten in D_i und D_j in $O(\log(m(d_i,d_j))$
- ii) Kürzeste Wege zwischen Punkten in D_i und D_j in $O(\log(m(d_i,d_j))+k)$
- iii) Konkatenation zweier Sanduhren $S(d_i,d_j)$ und $S(d_j,d_l)$ zu einer Sanduhr in Zeit $O(\log(m(d_i,d_j)) + \log(m(d_j,d_l)))$

Beweis: Skizze für iii)!!!

Algorithmus 1.6

• Preprocessing:

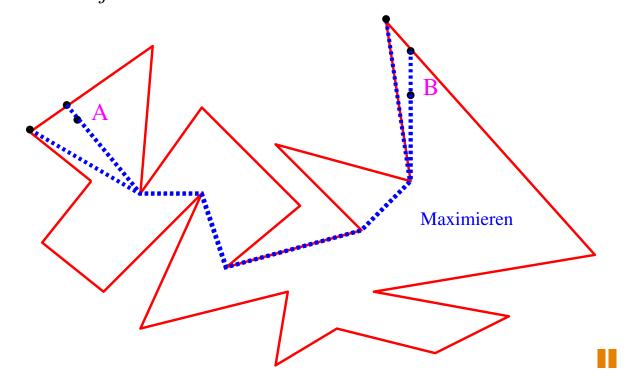
- $-\widehat{G}$ + Rooted Tree
- Sanduhren für Kanten
- Lokalisation Dreiecke
- Query, *p*, *q*:
 - Lokalisation D_p und D_q
 - Pfad zw. D_p und D_q in \widehat{G}
 - Sanduhr $S(d_p, d_q)$ aus Sanduhren entlang des Pfades
 - Länge oder kürzester Weg

Guibas/Hershberger: Laufzeiten

- ullet Datenstrukturen: \widehat{G} , Rooted Tree, Sanduhren, Trapezzerlegung
- Preprocessing Zeit: O(n)
- Komplexität: O(n)
- Lokalisation Dreiecke: $O(\log n)$
- Pfad in \widehat{G} in $O(\log n)$
- Konkatenation Sanduhren in $O(\log^2 n)$ ($O(\log n)$)
- Query: $O(\log n + k)$ oder $O(\log n)$ für die Länge
- Theorem 1.16

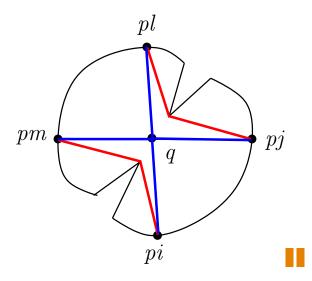
1.2.3 Durchmesser einfacher Polygone

- Einfaches Polygon P
- Längster Kürzester Weg zwischen zwei Punkten
- Endpunkte sind Ecken des Polygones n^2 Kandidatenpaare
- Formal: \max_{p_i,p_j} Ecken von $_P d(p_i,p_j)$



Idee der Berechnung:

- ullet p_i , p_j , p_l , p_m entlang des Randes
- Monge Eigenschaft: $d(p_i,p_m)+d(p_j,p_l) \leq d(p_i,p_l)+d(p_j,p_m)$
- Wege $\pi(p_i, p_l)$ und $\pi(p_j, p_m)$ schneiden sich
- Dreiecksungleichungen anwenden!!



Matrix A mit schöner Eigenschaft!

d(i, j) entspricht $d(p_i, p_j)$ und p_1, p_2, \ldots, p_n Knoten entlang des Randes von P!

Def. 1.17: Monotone Matrix!

 $n \times m$ -Matrix $A = (a_{i\ell})$ heißt monoton, falls

$$\forall 1 \le i < j \le n, 1 \le k < \ell \le m : (a_{ik} < a_{i\ell} \Rightarrow a_{jk} < a_{j\ell}).$$

$$\begin{array}{ccc}
k & \ell \\
i & \left(\begin{array}{ccc}
a_{ik} & < & a_{i\ell} \\
& & \downarrow & \\
j & \left(\begin{array}{ccc}
a_{jk} & < & a_{j\ell}
\end{array}\right)
\end{array}$$

Linkeste Zeilenmaxima weiter nach rechts

$$\left(\begin{array}{cccccc}
5 & 5 & 5 & 5 & 5 \\
1 & 7 & 9 & 6 & 3 \\
4 & 6 & 10 & 7 & 12
\end{array}\right)$$

Lemma 1.19: A ist monoton!

Beweis!!!

Theorem 1.20: Maxima für monotone Matrizen

- Monotone $n \times m$ -Matrix $A = (a_{i\ell})$, $m \ge n$
- Alg.1.7 Spaltenreduktion (Spalten streichen): monotone $n \times n$ -Matrix A'
- Zeilenmaxima (A, i) aus Zeilenmaxima (A', i) gewinnen
- Alg.1.8 Zeilenreduktion (gerade Zeilen auswählen): Monotone $n \times m$ -Matrix B
- Zeilenmaxima ungerade Zeilen aus Zeilenmaxima gerade Zeilen gewinnen
- Rekursiv mit Spaltenreduktion (Alg. 1.7)!!

Invariante:
$$a_{1,1} \geq a_{1,2} \geq a_{1,3} \geq a_{1,4}$$
 $a_{1,5}$ $a_{2,2} \geq a_{2,3} \geq a_{2,4}$ $a_{2,5}$ $a_{3,3} \geq a_{3,4}$ $a_{3,5}$ $a_{4,4} < a_{4,5}$

Falls nein, dann: $a_{1,1} \geq a_{1,2} \geq a_{1,3} \geq a_{1,4} \geq a_{1,5}$ $a_{2,2} \geq a_{2,3} \geq a_{2,4} \geq a_{2,5}$ $a_{3,4} \geq a_{3,5}$ $a_{4,4} \geq a_{4,5}$

Invariante:
$$a_{1,1} \geq a_{1,2} \geq a_{1,3} \geq a_{1,4}$$
 $a_{1,5}$ $a_{2,2} \geq a_{2,3} \geq a_{2,4}$ $a_{2,5}$ $a_{3,3} \geq a_{3,4}$ $a_{3,5}$ $a_{4,4} < a_{4,5}$

Falls ja, dann:
$$a_{1,1} \geq a_{1,2} \geq a_{1,3} \qquad a_{1,5}$$
 $a_{2,2} \geq a_{2,3} \qquad a_{2,5}$ $a_{3,5} \qquad a_{4,5}$

Streiche Spalte 4, weil:

$$a_{i,4} \le a_{i,3}$$
 für $i = 1, 2, 3$ und $a_{i,4} < a_{i,5}$ für $i = 4, \dots, n$

Letzte Zeile erreicht!

Komplette Spalte n+1 Streichen!!

Weiter mit Vergleich: $a_{n,n} \stackrel{?}{<} a_{n,n+2}$

Beispiel!!!

- Input: monotone $n \times m$ Matrix A, $m \ge n$
- ullet Output: monotone n imes n Matrix A'
- Zeilenmaxima von A' und A identisch
- Analyse:
 - -O(m) Vergleiche
 - − O(m) Zeiger für Rekonstruktion

Alg. 1.8: Zeilenmaxima

- Input: monotone $n \times m$ Matrix B
- ▶ Output: alle linkesten Zeilenmaxima $\max(i)$, $1 \le i \le n$
- Algorithmus:
 - C Zeilen von B mit geradem Index $\mathbb{O}(n)$
 - C' durch Spaltenreduktion(C) O(m)
 - Rekursiv: Zeilenmaxima(C'), $\frac{n}{2} \times \frac{n}{2}$ Matrix $I \left(\frac{n}{2}\right)$
 - Rekonstruktion (Zeiger) Zeilenmaxima von $C \mathbb{O}(m)$
 - Berechnung Zeilenmaxima von $B \mathbb{O}(m)$

Berechnung Zeilenmaxima von B

```
      (x
      x|
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
      x
```

O(m) Schritte !!!

Gesamtbeispiel

Spaltenreduktion:

Zeilenreduktion:

Spaltenreduktion:

Theorem 1.20: Maxima für monotone Matrizen

Laufzeitanalyse:

$$T(m) \leq T\left(\frac{n}{2}\right) \mathbb{I}(\operatorname{Rek.}) \mathbb{I} + C \times m \mathbb{I}(\operatorname{Sp.Red.} + \operatorname{Rekonstr.} + \operatorname{Ber.})$$

$$\mathbb{I} \leq T(\frac{n}{4}) + C\left(m + \frac{n}{2}\right)$$

$$\mathbb{I} : \mathbb{I}$$

$$\leq T(1) + C\left(m + n \sum_{i=1}^{\log n} \frac{1}{2^i}\right) \mathbb{I} \in O(m) \mathbb{I}$$

Nur O(m) viele Vergleiche!!!

Theorem 1.21: Durchmesser eines Polygones

- $n \times n$ Matrix A (symbolisch)
- ullet Preprocessing Guibas/Hershberger O(n)
- Zeilenmaxima von A mit O(n) Vergleichen
- Je Vergleich $O(\log n)$ Aufwand für Wert
- Gesamtlaufzeit: $O(n \log n)$