Online Motion Planning MA-INF 1314 **Restricted Graphexploration** Elmar Langetepe University of Bonn #### Repetition! - Modell 2D-cells, Spanning-Tree online construction - SpiralSTC/ScanSTC: Detours along Spanning-Tree edge - SpiralSTC equivalent to sub-cell-Model!!! - Algorithmic formulation, recursively defined - Strategy-Analysis: Locally! Belegt aber begehbare 2D Zellen ### Repetition: Local analysis - Count the boundary cells - Local analysis, multiple visits of cells, charge 2D cell - Inner-cell (Responsibility)), Intra-cell - Systematically: Boundary D-cells \geq inner+intral - Theorem: C + K (tight!) | Cell | İntra | Inner | Full | Bdcells | |------|-------|-------|------|---------| | 1 | 0 | 1 | 1 | 2 | | 2 | 1 | 2 | 3 | 3 | | 3 | 1 | 2 | 3 | 3 | | 4 | 1 | 1 | 2 | 2 | | 5 | 1 | 2 | 3 | 3 | #### Repetition: Less rotations for the tool - Avoid spiral-like paths - Move in columns - Also for the general case/path should exist - Scan also diagonally adjacent 2D cells - ScanSTC Algorithm - Also for the Backtracking step! ### **Analysis of 2D-ScanSTC** - Columns connectivity - ullet From Left to Right X nach Y - Sum up the Differences: Overall Z - Connectivity changes (ii) #### **Proof Sketch** \bullet H_{Opt} optimal number of horizontal edges in the spanning tree. Z number of connectivity changes of P. 2D-Scan-STC requires $$H_{STC} \le H_{Opt} + Z + 1$$ horizontal edges in its spanning tree. ### Online graphexploration! - Graph G: Visit all edges and vertices - DFS 2 competitive, optimal - Searching ⇒ Not too much into the depth - Restricted exploration, tether/accum. (applications) ### Restricted online graphexploration - Tether of length *k* - Graph G: Depth k, longest shortest path to start - Pure DFS: k=1 but tether length n is required - BFS: $k \approx n/2$ but $\Omega(n^2)$ visits for n edges # Modell: Restricted (online) graphenexploration - 1. Tethered agent $l = (1 + \alpha)r$ (cable). - 2. Agent returns to start after $2(1+\alpha)r$ steps (recharge accumulator) - 3. Large graph, explore up to depth d, flexible d - All vertices r steps away, depth r (radius) - All edges length 1 (weights, exercise) - Small look-ahead α necessary - First variant, reduction for the others (Lemma/Exercise) ### Restricted graphexploration: Simulation **Lemma** For any $\beta>\alpha$ a solution for the accumulation-variant with accumulator size $2(1+\beta)r$ can be attained from the solution of the tethered-variant with tether length $l=(1+\alpha)r$. The cost decrease by a factor of $\frac{1+\beta}{\beta-\alpha}$. Proof: Blackboard!!! #### Offline Algorithmus: Accumulator-variant - Offline: Graph is fully known - ullet Assume: 4r Accumulator - Complexity, (NP-hard?) unknown! Approximation O(|E|)! - Algorithm: DFS 2|E| steps - Cut into pieces of length 2r, subpaths - Starting segment in distance r - Visit from start, explore subpath, move back! #### **Example offline!** $$\left\lceil \frac{2|E|}{2r} \right\rceil \times 2r + 2|E| \le 6|E|$$ Example: $r = 5$ ## Offline Algorithm: Accumulator-variant **Lemma** A simple Accumulator-Offline Algorithm visits at most 6|E| edges. - ullet Reach any subpath-start with step-length 2r - Explore all subpath: 2|E| - $\left\lceil \frac{2|E|}{2r} \right\rceil$ subpaths in total - ullet Reaching by $\left\lceil \frac{|E|}{r} \right\rceil 2r$ steps - $\bullet \left\lceil \frac{|E|}{r} \right\rceil 2r \le \left(\frac{|E|}{r} + 1 \right) 2r \le 2|E| + 2r$ - $\bullet \ 4|E| + 2r \le 6|E|$ ### Online: Tethered graphexploration - Tether variant (cable), reductions for others (Lemma/Exercise) - First idea, DFS (edges) until tether is fully used, then backtracking - bDFS, bounded DFS - Nice try, is not enough! #### Method: Bounded DFS ``` bDFS(v, l): if (I=0) \lor (all outgoing edges are explored) then RFTURN end if for all non-explored edge (v, w) \in E do Move from v to w by (v, w). Mark (v, w) as explored bDFS(w, l-1). Move back from w to v by (v, w). end for ``` #### **Bounded DFS** - Example unit-length edgel - Problem: Not all edges will be reached - Edge to v is marked, End! - Only bDFS is not enough #### **CFS Algorithm:** Mark the vertices **non-explored** vertices, never visited. **incomplete** visited vertices, but there are non-explored edges starting at v. explored vertices, all incident edges have been explored. #### **CFS Algorithm** - Start bDFS at different sources - Set of (edge) disjoint **trees** $\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ - Root vertices s_1, s_2, \ldots, s_k - Choose T_i with s_i closest to s_i move to s_i - Pruning of T_i : Build T_{w_i} with root w_j if: - 1. $d_{T_i}(s_i, w_i) \geq minDist = \frac{\alpha r}{4}$ - 2. $Depth(T_{w_i}) \geq minDepth minDist = \frac{\alpha r}{4}$ - ullet Add all T_{w_i} to $\mathcal{T}!$ Remove T_i from $\mathcal{T}!$ - Explore T_i without T_{w_i} from s_i by DFS and \blacksquare - start bDFS at the incomplete vertices - ullet Graph G' of new vertices and edges lacksquare - Build a spanning tree T' of G - Choose root s' with minimal distance to s - ullet Add all these trees to \mathcal{T} - Special case: Trees in \mathcal{T} gets fully explored - ullet Trees in ${\mathcal T}$ with common egdes are joined - Merging: Build spanning tree with new root ### CFS Algorithm, Example #### **CFS Algorithm** ``` CFS(s, r, \alpha) ``` ``` ■ \mathcal{T} := \{\{s\}\}. repeat T_i := \text{tree in } G^* \text{ closest to } s. s_i := \text{root of } T_i \text{ (closest vertex to } s). (T_i, \mathcal{T}_i) := \text{prune}(T_i, s_i, \frac{\alpha r}{4}, \frac{\alpha r}{2}). \mathcal{T} := \mathcal{T} \setminus \{T_i\} \cup \mathcal{T}_i. explore(\mathcal{T}, T_i, s_i, (1 + \alpha)r). Remove all fully explored trees from \mathcal{T}. Merge all trees in \mathcal{T} with common vertices. Calculate spanning tree/root for merged trees. until \mathcal{T} = \emptyset ``` ### **CFS Algorithmus: Pruning!** #### prune(T, v, minDist, minDepth) ``` v := \text{Root of } T. for all w \in T such that d_T(v, w) = minDist do T_w := \text{subtree of } T \text{ with root } w. if max. distance from v and vertex in T_w > minDepth then // Cut-Off T_w from T: T := T \setminus T_w. \mathcal{T}_i := \mathcal{T}_i \cup \{T_w\}. end if end for RETURN (T, \mathcal{T}_i) ``` ### **CFS Algorithmus: Explore!** #### explore(\mathcal{T} , T, s_i , l) Move from s to s_i along shortest (known) path. Explore T by DFS. If incomplete vertex v is visited: l':= remaining tether length. bDFS(v, l'). E':= newly explore edges. V':= vertices from in E' (plus v). Build spanning tree T' of G'=(V',E'). $\mathcal{T}:=\mathcal{T}\cup\{T\}$. Move back from s_i to s. ### **CFS Algorithmus: Example!!** - \bullet $G^* = (V^*, E^*)$ Graph of the explored edges and and vertices - (successively extended) - Set T - Pruning - Explore (DFS/bDFS)