Online Motion Planning, SS 17
 Exercise sheet 11
 University of Bonn, Inst. for Computer Science, Dpt. I

- You can hand in your written solutions until Wednesday, 12.07., 14:15, postbox in front of room E. 01 LBH.

Exercise 31: SearchRatio of a Grid

We are searching for an unknown goal in one cell of a fixed 8×8 cell environment, starting at some fixed point s as given in Figure 1. The agent has no vision. We assume that moving from one cell to an adjacent cell always takes one step. We are looking for a search strategy that competes with the shortest path to an unknown goal in a cell.

Prove the following statements.

1. There is a search strategy that guarantees to find any goal with distance x from the start in $7 \cdot x$ steps.
2. There is no strategy that guarantees to find any goal at distance x with at most $5 \cdot x$ steps.
3. There is no strategy that guarantees to find any goal at distance x with at most $6 \cdot x$ steps.
4. Consider a 4×4 grid. Provide a strategy π and prove that the SearchRatio of the strategy π is minimal.

Figure 1: The $8 \times 8=64$ grid.

Exercise 32: Looking around a corner

Compute the competitive factors of the following strategies for looking around a corner, given by the vertices of the exploration paths they specify. Here the starting point of our robot is the origin $(0,0)$ of the coordinate system and the corner is at position $(0,1)$.
a) $P_{1}=(-1,0), P_{2}=(-1,2), P_{3}=(0,2)$.
b) $P_{1}=\left(-1, \frac{1}{2}\right), P_{2}=(0,1)$.
c) $P_{1}=\left(-\frac{\sqrt{2}}{4}, \frac{2-\sqrt{2}}{4}\right), P_{2}=\left(-\frac{1}{2}, \frac{1}{2}\right), P_{3}=\left(-\frac{\sqrt{2}}{4}, \frac{2+\sqrt{2}}{4}\right), P_{4}=(0,1)$.

In part c), it suffices

- to provide a function that computes, for a given angle γ at the corner (see Figure 2), the distance the robot moves before it can look around the corner for the first time.
- to determine the distance moved by the optimal offline strategy, depending on γ.

Figure 2: The angle γ.

Note that in this exercise we require that the additive constant, α, in the definition of the competitive factor is 0 .

