Exercise Sheet 8

Exercise 8.1: Elder Rule effects

Consider the following path decomposition of a merge tree generated from a filtration based on the elder rule where the dashed lines symbolize the different levels of the filtration and a the bending path at an intersection is the path that ended upon two components merging.

How does the same graph look if instead of using the elder rule, a contrasting 'younger rule' is used? How many paths can span from a level a to a level b?

Exercise 8.2: Fundamental Lemma

Prove the following fundamental Lemma of persistent homology mentioned in the lecture:
Given the following definitions for a filtration $\emptyset=K_{0} \subseteq K_{1} \subseteq \ldots \subseteq K_{n}=K$

$$
\begin{aligned}
& H_{p}^{i, j}:=\operatorname{Imh}_{p}^{i, j}=Z_{p}\left(K_{i}\right) /\left(B_{p}\left(K_{j}\right) \cap Z_{p}\left(K_{i}\right)\right) \subseteq H_{p}\left(K_{j}\right) \\
& \beta_{p}^{i, j}:=\operatorname{dim} H_{p} i, j \quad p^{t h} \text { persistent Betti number } \\
& \lambda_{p}^{i, j}:=\text { number of p-classes born at } K_{i} \text { and dying at } K_{j},
\end{aligned}
$$

so (since $\beta_{p}^{i, j-1}-\beta_{p}^{i, j}$ is the number of p-classes born at $\leq K_{i}$ and dying at K_{j}), while $\beta_{p}^{i-1, j-1}-\beta_{p}^{i-1, j}$ is the number of p-classes born at $\leq K_{i_{1}}$ and dying at K_{j})

$$
\lambda_{p}^{i, j}=\beta_{p}^{i, j-1}-\beta_{p}^{i, j}-\left(\beta_{p}^{i-1, j-1}-\beta_{p}^{i-1, j}\right)
$$

Then it holds for $0 \leq k \leq l \leq n$:

$$
\beta_{p}^{k, l}=\sum_{i \leq k} \sum_{j<l} \lambda_{p}^{i, j}
$$

Exercise 8.3: Complexity of pseudodisc polygon union

Consider the following situation.
n convex polygons (each of constant complexity) form a family of pseudodiscs, i.e. each pair of polygons have at most 2 intersections.
What is the complexity of the border of the union of this polygons?

